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We present a formalism to compute the probability of an amino acid
sequence conformation being native-like, given a set of pairwise atom±
atom distances. The formalism is used to derive three discriminatory
functions with different types of representations for the atom±atom con-
tacts observed in a database of protein structures. These functions include
two virtual atom representations and one all-heavy atom representation.
When applied to six different decoy sets containing a range of correct
and incorrect conformations of amino acid sequences, the all-atom dis-
tance-dependent discriminatory function is able to identify correct from
incorrect more often than the discriminatory functions using approximate
representations. We illustrate the importance of using a detailed atomic
description for obtaining the most accurate discrimination, and the neces-
sity for testing discriminatory functions against a wide variety of decoys.
The discriminatory function is also shown to be capable of capturing the
®ne details of atom±atom preferences. These results suggest that the all-
atom distance-dependent discriminatory function will be useful for
protein structure prediction and model re®nement.
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Introduction

Any algorithm that attempts to predict protein
structure requires a discriminatory function that
can distinguish between correct and incorrect con-
formations. These discriminatory functions can be
extremely simple: for example, counting atomic

contacts in a given conformation, or can involve
elaborate calculations based on the physics of the
system to determine the energy of a conformation
(Brooks et al., 1983; Weiner et al., 1986; Jorgensen &
Tirado-Rives, 1988).

A class of discriminatory functions is knowl-
edge-based. These functions compile parameters
from tendencies observed in a database of exper-
imentally determined protein structures (Wodak &
Rooman, 1993; Sippl, 1995). Historically, knowl-
edge-based discriminatory functions have gained
popularity in their application to the ``fold recog-
nition'' problem, i.e. recognising the fold an amino
acid belongs to in the absence of detectable
sequence homology (Sippl, 1990; Bowie et al., 1991;
Jones et al., 1992; Bryant & Lawrence, 1993). Since
then, knowledge-based discriminatory functions
have been used to validate experimentally deter-
mined protein structures (LuÈ thy et al., 1992; Sippl,
1993; MacArthur et al., 1994), for ab initio protein
structure prediction (Sun, 1993; Simons et al., 1997),
and have proven their worth in bona ®de fold rec-
ognition experiments (Lemer et al., 1995; Madej
et al., 1995; FloÈckner et al., 1995; Jones et al., 1995;
Levitt, 1997).

Abbreviations used: CASP, critical assessment of
protein structure prediction methods; CDF, contact
discriminatory function; crabpi, cellular retinoic acid
binding protein I; edn, eosinophil derived neurotoxin;
e5.2, immunoglobulin domain protein; GA, genetic
algorithm; hpr, histidine-containing phosphocarrier
protein; IFU, independent folding unit; IRAPDF, linearly
interpolated residue-speci®c all-atom conditional
probability discriminatory function; NMR, nuclear
magnetic resonance; mm23, nucleoside diphosphate
kinase protein; NVPDF, non-residue-speci®c virtual-
atom conditional probability discriminatory function;
PDB, Protein Data Bank; PDF, probability
discriminatory function; p450, heme protein; RAPDF,
residue-speci®c all-atom conditional probability
discriminatory function; RVPDF, residue-speci®c virtual-
atom conditional probability discriminatory function;
rmsd, root mean square deviation.
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Generally, knowledge-based discriminatory
functions have used a simple one- or two-point-
per-residue representation. That is, they usually
represent each residue in a protein sequence with
one or two positions in three-dimensional space.
Discrimination is based on each residue's prefer-
ence to be buried or exposed, its preference for a
particular secondary structure conformation,
and/or its preference to be in contact at a particu-
lar distance and sequence separation from other
residues (Sippl, 1990; Bowie et al., 1991; Jones et al.,
1992; Bryant & Lawrence, 1993). However, to cap-
ture the ®ner details of atom±atom interactions in
proteins, a more detailed representation is necess-
ary, and two such functions (DeBolt & Skolnick,
1996; Subramaniam et al., 1996) have been devel-
oped so far. For example, in a comparative model-
ing scenario where two possible models can be
quite similar (within 1.0 to 3.0 AÊ in terms of root
mean square deviation (rmsd) of the Ca atoms)
to the experimentally determined structures
(Mosimann et al., 1995), we need all the infor-
mation we can possibly obtain from the two
models to determine which one is more accurate.
A one-point-per-residue discriminatory function
may not be able to discriminate as well as an all-
atom discriminatory function, which takes into
account the environment of all the atoms on the
main-chain and the side-chain of each residue.
Also, a detailed all-atom model cannot be built
using a simple representation.

A major issue in developing any discriminatory
function for work with protein molecules is how to
test performance. There are three principal strat-
egies. Most popular for testing physics-based func-
tions has been detailed comparison with
experimental data from small molecule systems
(Halgren, 1995). The assumption is that good
results on such data must imply adequate perform-
ance on the large molecule systems. The second
method is the use of ``decoy'' sets (Park & Levitt,
1992). That is, devising many incorrect structures,
and testing whether a function can discriminate
between these and the experimental conformation.
Decoys have been based on lattice models (Park &
Levitt, 1992), molecular dynamics trajectories
(Wang et al., 1995), crystal structures of different
resolutions (Subramaniam et al., 1996) and amino
acid sequences mounted on radically different
folds (Holm & Sander, 1992a). World Wide Web
sites have been established to provide decoy test
sets for fold recognition functions (Fischer &
Eisenberg, 1996; Fischer, 1997) and for general pro-
tein structure prediction functions (Braxenthaler
et al., 1997). To date, each function has generally
only been tested on one or two classes of decoy. A
danger here is that discrimination may be achieved
utilizing some speci®c aritfacts of the decoys. For
example, non-compactness or systematic distortion
of detailed features such as abnormal hydrogen
bond length. The third approach is to use the func-
tion to drive a search for a native like confor-
mation, starting from some approximate structure.

Tests of this sort have so far only been reported for
physics-based potentials, and very rarely have they
been even partially successful (Storch & Daggett,
1995). For protein structure prediction to work, this
is the most relevant test, but it is also the most dif-
®cult and time consuming. We have opted for test-
ing against decoys, and have used as wide a range
of types as possible, taking advantage of the test
sets available in PROSTAR, the Protein Potential
Test Site (Braxenthaler et al., 1997).

Our goal is to develop a discriminatory function
that will work well at identifying the best confor-
mation among a set of incorrect or approximate
conformations. To accomplish this, we derive pair-
wise distance-dependent all-atom conditional prob-
ability functions that represent atom±atom
preferences in a residue speci®c manner. We evalu-
ate the performance of these functions by seeing
how well they distinguish correct conformations of
an amino acid sequence from incorrect or approxi-
mate (decoy) conformations. We perform this
evaluation for a wide variety of decoy types. We
compare this discriminatory function to three more
approximate representations to determine the
effect of decreasing detail in the representation.
Two of the approximate representations treat com-
binations of atoms as single ``virtual atoms''. The
third approximate representation, a simple contact-
based discriminatory function, is used to illustrate
how much of the discriminatory information is
obtained from compactness alone (Bahar &
Jernigan, 1997). We discuss the implications of the
these results for protein structure prediction and
model re®nement.

Methods

We will describe two formalisms. The ®rst com-
putes the conditional probabilities, and the second
computes the free energies, of pairwise atom±atom
preferences in proteins using statistical obser-
vations on native structures. We make the obser-
vation that these two formalisms are equivalent for
all practical purposes. However, it is more straight-
forward to think of pairwise preferences of atoms
in proteins in terms of probabilities rather than in
terms of free energies: the Boltzmann formalism
assumes an equilibrium distribution of atom±atom
preferences, the physical nature of the reference
state is not clear, and the probability of observing
a system in a given state must change with respect
to the temperature (Moult, 1997).

The conditional probability formalism

We divide the possible conformations of a struc-
ture or piece of structure into two subsets, the set
of conformations we will regard as correct (i.e.
native conformations, having low rms deviation
from the experimental structure), {C}; and the rest,
the set of incorrect structures {I}. We consider a set
of properties of the structure {yk}. The properties
may be any aspects of protein structure that differ
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signi®cantly between the set of incorrect confor-
mations we are dealing with and the confor-
mations we regard as correct. Examples might be
the strength of electrostatic interactions, close pack-
ing, exposure of non-polar groups to solvent, or, as
in the present application, simply a set of intera-
tomic distances within a structure, {dij

ab}, where dij
ab

is the distance between atoms i and j, of type a and
b, respectively. We wish to evaluate P(C|{dij

ab}), the
probability the structure is a member of the ``cor-
rect'' set, given it contains the distances {dij

ab}. To
perform this evaluation, we express P(C|{dij

ab}) as
an explicit function of probabilities that can be
derived from experimental structures. These are
P(dij

ab|C), the probability of observing a distance d
between two atoms i and j of types a and b in a
correct structure, and P(dij

ab), the probability of
observing such a distance in any structure, correct
or incorrect. Also required is P(C), the probability
that any structure picked at random is a member
of the ``correct'' set. We use the general and exact
chain rule for conditional probabilities (Mosteller
et al., 1970):

P�C� � P�dij
abjC� � P�dij

ab� � P�Cjdij
ab� �1�

and express the probabilities of observing the set
of distances as products of the probabilities of
observing each individual distance, making the
important approximation that all distances are
independent of one another:

P�fdij
abgjC� �

Y
ij

P�dij
abjC�; P�fdij

abg� �
Y

ij

P�dij
ab�

�2�
It then follows that:

P�Cjfdij
abg� � P�C� �

Y
ij

P�dij
abjC�

P�dij
ab�

�3�

P(C) is a constant independent of conformation for
a given amino acid sequence, and is not considered
further. Note however that its omission means that
scores from different sequences cannot be com-
pared. It is useful to use a log form of equation (3),
both to scale the quantities involved to a small
range, and to give a form similar to that of a poten-
tial of mean force. We use a scoring function S
proportional to the negative log conditional prob-
ability that the structure is correct, given a set of
distances:

S�fdij
abg� � ÿ

X
ij

ln
P�dij

abjC�
P�dij

ab�
/ ÿ ln P�Cjfdij

abg� �4�

Given an amino acid sequence conformation, we
calculate all the distances between all pairs of atom
types and compute the score S on the left-hand
side by summing up the probability ratios assigned
to each distance between a pair of atom types.

To make use of equation (4), we need distri-
butions of P(dab|C) and P(dab) for all combinations

of atom types at all observed distances. The
P(dab|C) are derived directly from experimental
structures as follows:

Using a set of known structures from the
Brookhaven Protein Data Bank (PDB) (Bernstein
et al., 1977), we can make observations of atom±
atom contacts in particular distance bins. We com-
pute the probability of observing atom type a and
atom type b in a particular distance bin (with mid-
point value d) in a native conformation C,P(dab|C),
like so:

P�dabjC� � f �dab� � N�dab�
�dN�dab� �5�

Here N(dab) is the number of observations of atom
types a and b in a particular distance bin d. The
denominator is the number of a±b contacts
observed for all distance bins. We assume that the
frequency distributions obtained from the data-
base, f(dab), here and elsewhere, represent the prob-
abilities.

For example, if the number of lysine Nz and glu-
tamate Od1 (KNz-EOd1) contacts within a distance
range of 4.0 to 5.0 AÊ was found to be equal to 10
in the data set, and the total number of KNz-EOd1

contacts observed in all distance bins was 100, the
frequency of KNz±EOd1 contacts at distance bin 4.5
is 10/100 � 0.1.

P(dab) may be thought of as describing a prop-
erty of the reference state, speci®cally, the prob-
ability of seeing a separation d between atoms
types a and b in any possible structure, correct or
incorrect. In terms of Bayesian statistics (Mosteller
et al., 1970), P(dab) is a prior distribution, that is,
our knowledge of the interatomic distances in pro-
teins for a particular pair of atom types, before we
have observed any experimental structures. An
advantage of the Bayesian viewpoint compared
with the requirements of the potential of mean
force is that it more clearly allows a choice of any
prior distribution convenient to our purpose. Many
different prior distribution choices are possible. For
example, we may assume that all distances are
equally probable (Subramaniam et al., 1996), or
that the set of distances observed in some random
coil model is appropriate, a choice often made in
potential of mean force work (Avbelj & Moult,
1995b) because of the relevance to the physical
folding process. Such distributions are perfectly
valid, but do not necessarily make the best use of
the available information. For example, it has been
shown that much of the apparent signal in a poten-
tial of mean force using a random coil reference
state originates in the non-speci®c compactness of
correct structures (Jernigan & Bahar, 1996; Bahar &
Jernigan, 1997). To obtain the most information
supporting or refuting the hypothesis that we are
considering a native structure, we would like to
use a distribution that includes all the possible
incorrect structures that might be encountered, but
one that is not unnecessarily broad. In a particular
application where a large number of representative
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conformations have been generated, for example,
when examining all possible conformations of a
loop in a protein molecule (Fidelis et al., 1994), it is
possible and presumably advantageous to compile
the reference distributions from the available cor-
rect and incorrect conformations. More typically,
the sample of incorrect conformations available is
too sparse to allow this direct approach. In the pre-
sent work, we deal only with a prior distribution
that is generally useful for structure prediction.
Methods used to predict protein structure usually
produce reasonably compact models, even when
the result is incorrect. Thus, a good choice of prior
distribution is that found in the set of possible
compact conformations.

We assume that averaging over different atom
types in experimental conformations is an ade-
quate representation of the random arrangements
of these atom types in any compact conformation.
Then we can approximate P(dab), the probability of
®nding atom types a and b in a distance bin d in
any compact conformation, native or otherwise, as
equal to P(d), the probability of seeing any two
atom types in a distance bin d:

P�dab� � P�d� � f �d� � �abN�dab�
�d�abN�dab� �6�

Here, �abN(dab) is the total number of contacts
between all pairs of atom types in a particular dis-
tance bin d, and the denominator is the total num-
ber of contacts between all pairs of atom types
summed over the distance bins d.

There are three principal approximations in this
formalism:

(1) All the interatomic distances are independent
of one another. This is clearly not correct: if atom
A is close to atom B and to atom C, then we know
that atoms B and C must also be fairly close. For
example, if the Cd2 of leucine is close to the Cd1

atom of another leucine, it is likely that the Cd1 of
the ®rst residue will also be close to this atom. In
this sense, there is some degree of double counting
of interactions. Although it is possible to write the
probabilities in a way that takes these correlations
into account, much more data would be required
to obtain adequate statistics, so that it is dif®cult to
assess the impact of this approximation.

(2) The distribution of interatomic distances in
proteins is not signi®cantly different in different
environments. This is not universally true. Two
examples: the distribution of distances between
ionic groups on the surface of proteins is very
different from that of buried pairs (Wodak &
Rooman, 1993), and the probability of a hydrogen
bond being formed between main-chain groups
varies sharply as a function of the sequence separ-
ation between them (Sippl et al., 1996). In principle,
given a large enough set of experimental struc-
tures, it is possible to compile separate probability
distributions for each such environmental variable,
subject to availability of suf®cient observations.

We have not attempted to do that in the present
study.

(3) The interatomic distance probability distri-
butions derived from experimental structures will
be suf®ciently sharp, and different for different
atom types, that a useful discriminatory signal will
be obtained. We examine the extent to which this
is true later in this work.

The potential of mean force

The potential of mean force method for discrimi-
nating between correct and incorrect protein struc-
tures rests on three assumptions:

(1) The total free energy of a protein molecule
relative to some reference state, �Gtot, can be
expressed as a sum of the relative free energy
�G(R) of a number of individual contributions,
where R represents the value of a ``reaction co-
ordinate''. As with the conditional probability anal-
ysis, the reaction co-ordinate may be any con-
venient measure of property of the molecule
(Beveridge & DiCapua, 1989), such as the separ-
ation of speci®c types of atoms (Bahar & Jernigan,
1997) or residues (Sippl, 1990; Jones et al., 1992),
the distance between hydrogen bonding groups
(Sippl et al., 1996), or the value of the local main
chain electrostatic energy (Avbelj & Moult, 1995b).
We again consider the particular case of a reaction
co-ordinate representing the distance of d between
atoms i and j of type a and b, respectively, so that:

�Gtot �
X

ij

�G�dij
ab� �7�

Although enthalpy may be reasonably approxi-
mated by such a pairwise sum of interactions, and
typically is in empirical force ®eld application
(McCammon & Harvey, 1987), it is not generally
valid to do this for free energy, because entropy
contributions can not be regarded as additive
(Mark & van Gunsteren, 1994). This issue is related
to the assumption of independence of contributions
in the conditional probability formalism discussed
earlier, but the nature of the approximation is
harder to express quantitatively.

(2) The relative free energy of a particular inter-
action between any pair of components can be
deduced from the inverse of Boltzmann's law:

G�dab� � ÿkT ln
r�dabjC�
r�dab� �8�

where k is the Boltzmann constant, T is the absol-
ute temperature, r(dab|C) is the density of groups a
and b at a separation d in experimental protein
structures, and r(dab) is the same density in the
reference state (McQuarrie, 1976). Two assertions
underlie this expression: each occurrence of dab in
experimental structures is independent of any
thing else in the environment, and the distribution
over a set of observations of dab in a number of
different proteins should obey Boltzmann's
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distribution. Sippl et al. (1996) have argued
cogently that the latter point is true.

(3) The lowest free energy conformation rep-
resents the native state (often called the thermo-
dynamic hypothesis) (An®nsen, 1973).

Substituting equation (8) into equation (7), we
have:

Gtot � ÿkT
X

ij

ln
r�dij

abjC�
r�dij

ab�
�9�

This expression is similar to our scoring function
for the conditional probability formalism (equation
(4)), except that we are dealing with the density of
states with particular distance values, rather than
the probability. However, such densities are also
equivalent to the frequencies de®ned in equation
(4), and are evaluated inexactly the same way from
experimental structures. Thus, seeking the confor-
mation with the lowest free energy based on a
potential of mean force analysis is formally equiv-
alent to seeking the one with the largest probability
of presenting a native structure in terms of a Baye-
sian statistics. Because of the less clear assumptions
involved in the potential of mean force analysis,
we prefer to use the simpler Bayesian probability
formalism in this work.

The residue-specific all-atom probability
discriminatory function

The conditional probabilities for the residue-
speci®c all-atom probability discriminatory func-
tion (RAPDF) are compiled from frequencies of
contacts between pairs of atom types in a database
of protein structures. All non-hydrogen atoms are
considered, and the description of the atoms is resi-
due speci®c, i.e. the Ca of an alanine is different
from the Ca of a glycine. This results in a total of
167 atom types. Contacts between atoms within a
single residue are excluded from the counts. We
divide the distances observed into 1.0 AÊ bins ran-
ging from 3.0 to 20.0. Contacts between pairs of
atom types in the 0.0 to 3.0 AÊ range are placed in a
separate bin, resulting in total of 18 distance bins.
Table 1 lists the atom types used for this discrimi-
natory function.

A table containing the negative log conditional
probability scores, S, for all pairs of atom types for
all distances is compiled from a database of known
structures using equation (4). Given an amino acid
sequence in a particular conformation, the scores of
all contacts between pairs of atom types with dis-
tances that fall within the distance cutoff above

(ignoring contacts between atoms within a single
residue) are summed up to yield the total score
supporting the hypothesis that the conformation is
correct. All counts were initialized to one to avoid
taking the log of zero. This procedure is used for
all probability discriminatory functions described
in this paper.

The residue-specific virtual-atom probability
discriminatory function

The conditional probabilities for the residue-
speci®c virtual-atom probability discriminatory
function (RVPDF) are compiled from frequencies
of contacts between pairs of virtual atom types in a
database of protein structures. A virtual atom
approximation similar to the one developed by
Head-Gordon & Brooks (1991) is used. This rep-
resentation combines a group of atoms into a
single virtual atom type by averaging over the cor-
responding x, y, and z Cartesian coordinates of the
individual atoms. Aside from labeling conventions,
the present representation differs from the original
one in the determination of the virtual centers for
virtual atoms vNH and vOH, taken here to be rep-
resented by the positions of the N and O atoms,
respectively, rather than the geometric centres. The
distance bins are the same as in the RAPDF. Each
of the virtual atom types is pre®xed by the type of
the residue, resulting in 105 different virtual atom
types. Table 2 lists the virtual atoms used for this
discriminatory function and the combinations of
atom types they represent.

The non-residue-specific virtual-atom
probability discriminatory function

The non-residue-speci®c virtual-atom probability
discriminatory function (NVPDF) differs from
RVPDF only in that the virtual atom types are not
residue-speci®c. For example, all vCa atom types
are considered the same, and all vCb atom types
are considered the same, and so on. The total num-
ber of virtual atom types considered under this
approximation is 21.

The contact discriminatory function

To examine how well non-speci®c compactness
alone can discriminate between correct and incor-
rect conformations relative to the three PDFs
(RAPDF, RVPDF and NVPDF) described above,
we use a simple contact discriminatory function
which assigns a score of ÿ1.00 for every atom±
atom contact within 6.0 AÊ in an amino acid

Table 1. List of atom types used in the all-atom residue speci®c probability discriminatory function
(RAPDF). Each of these atom types is pre®xed by the type of the residue, resulting in 167 different
atom types

C Ca Cb Cd Cd1 Cd2 Ce Ce1 Ce2 Ce3 Cg Cg1

Cg2 CH2 Cz Cz1 Cz2 N Nd1 Nd2 Ne Ne1 Ne2 NH1

NH2 Nz O Od1 Od2 Oe1 Oe2 Og Og1 OH Sd Sg
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sequence conformation, excluding contacts within
a single residue.

The linearly interpolated residue-specific
all-atom probability discriminatory function

The three PDFs (RAPDF, RVPDF, NVPDF) use
discrete bins to compile the probability scores. This
leads to a situation where the score for observing
any distance within a bin width is the same for a
given pair of atom types. In reality, the preferences
between atom types vary in a continuous manner
as the distances between the contacts vary. We
thus also evaluate the total score of a conformation
by linearly interpolating between the scores for the

discrete bins to uniquely de®ne the score for a
given distance. The linear interpolation is used to
modify the RAPDF.

Interpolation is based on two assumptions: (1)
The value at the mid-point of the distance bins is
given by the score for that distance bin. (2) There is
a linear relationship between probability values
observed for neighbouring bins.

Thus, if da represents the actual distance encoun-
tered, dl represents the mid-point of the closest dis-
tance bin value on the left-hand side, dr represents
the mid-point of the closest distance bin on the
right-hand side, and Sl represents the score for dl,
and Sr the score for dr. Sa, the score for da is given
by:

Table 2. List of virtual atom types used in the residue-speci®c and non-residue-
speci®c virtual-atom probability discriminatory functions (RVPDF and NVPDF,
respectively). The table lists the virtual atom type, the atom types of the com-
ponents, and the residues it is present in (in one-letter code). For the RVPDF,
each of the virtual atoms is pre®xed by the type of residue (in one-letter code),
resulting in 105 different virtual atom types.

Virtual atom Components Present in residue

vCO C � O all
vNH1 N all
vNH2 Nd2 N
vNH2 Ne2 Q
vNH2 NH1 R
vNH2 NH2 R
vNH3 Nz K
vNHE Nd1 H
vNHE Ne2 H
vNHE Ne R
vNHE Ne1 W
vCOS Cg � Od1 N
vCOS Cd � Oe1 Q
vCSC Cg � Sd � Ce M
vCCC Cb � Cg1 � Cg2 V
vCCC Cg � Cd1 � Cd2 L
vC3R Cb � Cg1 � Ce1 F
vC3R Cd2 � Ce2 � Cz F
vC3R Cb � Cg1 � Ce1 Y
vC3R Cd2 � Ce2 � Cz Y
vC3R Cd2 � Ce3 � Cz3 W
vC3R Ce2 � Cz2 � CH2 W
vCOO Cg � Od1 � Od2 D
vCOO Cd � Oe1 � Oe2 E
vOH Og S
vOH Og1 T
vOH OH Y
vCC Cb � Cg2 I
vCC Cg1 � Cd1 I
vCC Cb � Cg K
vCC Cd � Ce K
vCC Cg � Cd R
vCC Cb � Cg2 T
vCCP Cb � Cg P
vCCR Cg � Cd1 W
vCCH Cg � Cd2 H
vSH Sg C
vCE1 Ce1 H
vC Cz R
vCH3 Cb A
vCH2 Ca G
vCH2 Cb C,D,E,F,H,K,M,N,Q,R,S,W,Y
vCH2 Cg E,Q
vCH2 Cd P
vCH Ca A,C,D,E,F,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y
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Sa � Sl � �Sr ÿ Sl� � da ÿ dl

dr ÿ dl

� �
�10�

Low counts analysis

We have investigated the effect of ®nite counts
used to de®ne the frequencies required for a PDF
(equation (4)), by introducing a simple model of
count variation. For each set of counts obtained
from observations of particular pairs of atom types
in the database in equations (5) and (6), we assume
a Gaussian distribution for variation in counts in
repeated experiments and modify the counts
accordingly. A set of possible alternative counts is
then obtained using the equation:

N0 �
X

m

Rÿm

2

 !
� s�N �11�

where N is the observed count value, N0 is the
modi®ed count value, �mR represents the sum of
m random numbers R in the interval [0,1] (m � 12),
and s represents the standard deviation in the
observed counts, assumed to be N1/2.

We generate 100 different sets of modi®ed
counts each of the terms in equation (4) for the 18
distance bins using the above procedure, thus pro-
viding 100 different sets of conditional probability
curves that might have been obtained from a pro-
tein database of the same type and size used in
this work. These modi®ed curves are compared to
the observed one for particular pairs of atom
types.

Selection of the structure library for obtaining
conditional probabilities

Table 3 lists the PDB codes of the 265 structures
that were used for compiling the conditional prob-
abilities for the discriminatory functions described
above. The PDB codes were initially obtained from
the CATH database and are a set of non-homolo-
gous (less than 30% sequence identity between any
proteins in the set) X-ray structures better than
3.0 AÊ resolution (Orengo et al., 1993). Structures
with multiple side-chain conformations have been
modi®ed such that only the side-chain confor-

Table 3. List of PDB (Bernstein et al., 1977) codes of the 265 protein chains used for compi-
lation of conditional probabilities. In cases where a single chain of the protein is used for the
compilation, the chain identi®er is shown

1351 1c5a 1gox 1oma 1tabI 2hpdA 3pgk
1aaf 1cauA 1gpb 1omf 1ten 2ltnA 3pgm
1aak 1cdb 1gpr 1ovb 1tfi 2ltnB 3rubS
1aba 1cde ahcc 1pba 1tgl 2mev4 3sc2A
1aco 1cdg 1hgeA 1pfa 1thg 2mnr 3sc2B
1acp 1cewI 1hgeB 1pdc 1tml 2msbA 4enl
1add 1cmbA 1hleA 1pfkA 1tnfA 2nckL 4fgf
1adn 1cobA 1hmy 1pgd 1tplA 2ohxA 4gcr
1ads 1colA 1hoe 1pgx 1tpm 2ovo 4htcI
1ak3A 1coy 1hsbA 1pha 1ttaA 2pia 4mt2
1ala 1cpcA 1hstA 1phh 1ttf 2plv4 4sbvA
1alkA 1cpt 1huw 1pii 1ula 2pmgA 4sgbI
1aozA 1csc 1hyp 1pkp 1utg 2polA 5fd1
1apa 1cseE 1ifc 1plc 1vil 2reb 5p21
1apmE 1cseI 1ipd 1poa 1vsgA 2rhe 5pti
1aps 1ctf 1isuA 1poxA 1wsyA 2rn2 5rubA
1arb 1d66A 1kst 1ppn 1wsyB 2sicI 5timA
1arqA 1dhr 1lab 1prcC 1xis 2sn3 6insE
1atnA 1dmb 1lct 1prcH 1ycc 2sns 7aatA
1atr 1eca 1lfi 1prcL 1ysaC 2stv 7catA
1atx 1ede 1lis 1ptf 1zaaC 2tgi 7rsa
1ayh legf 1lla 1pyaA 256bA 2tmdA 8abp
1bal 1etrL 1lmb3 1pyaB 2aaiB 2tmvP 8fabB
1bbpA 1ezm 1ltsA 1pyp 2bbkH 2tsl 8rxnA
1bbt1 1fbaA 1ltsC 1raiA 2bbkL 2tscA 9wgaA
1bbt2 1fc2D 1lyaA 1raiB 2bopA 2yhx
1bbt3 1fiaA 1mat 1rcb 2bpal 3b5c
1bbt4 1fkb 1mfaH 1rec 2bpa2 3bcl
1bds 1fnr 1mfa: 1rfbA 2cas 3blm
1bgc1 1fus 1minA 1rhd 2cba 3cla
1bgc2 1fxd 1minB 1ribA 2cdv 3cts
1bgh 1gal 1mypA 1rip 2cmd 3dfr
1bha 1gatA 1mypC 1rro 2cpl 3ebx
1bia 1gd1O 1nar 1rveA 2ctc 3ecaA
1bllE 1gdhA 1nipA 1sbp 2ctvA 3gapA
1bmv1 1gky 1noa 1shaA 2cyp 3grs
1bmv2 1glaG 1nrcA 1shg 2dnjA 3il8A
1brnL 1glt 1nrd 1sim 2er7E 3mdsA
1btc 1gluA 1nscA 1sryA 2gstA 3monA
1bw3 1gof 1ofv 1stp 2hhmA 3monB
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mations with atoms having the highest occupancy
and/or lowest temperature factors are used.

Decoy set generation

The decoy sets used were obtained from the Pro-
tein Potential Site (PROSTAR) (Braxenthaler et al.,
1997) and can be divided into two classes. Decoy
sets in class I discriminate between one correct and
one or more incorrect or approximate confor-
mations. Decoys sets in class II are a set of approxi-
mate conformations that vary in rmsd to the
experimental conformation, excluding the exper-
imental conformation itself.

Table 4 lists the decoy sets in class I. The MIS-
FOLD decoy set, generated by Holm & Sander
(1992a), consists of 25 examples of pairs of proteins
with the same number of residues in the chain, but
different sequences and conformations. Sequences
were swapped between members of a pair, and
side-chain packing annealed using a Monte Carlo
process (Holm & Sander, 1992a). These provide
inappropriate environments for most of the side-
chains in the structures.

The ®rst experiment on the Critical Assessment
of protein Structure Prediction methods (CASP2)
produced a set of 42 comparative models of six
different proteins (Mosimann et al., 1995). These
form the CASP1 decoy set. The models vary in Ca
rmsd to the corresponding experimental confor-

mation, ranging from 0.53 to 7.40 AÊ , depending on
the dif®culty of the model building process.

The IFU decoy set is based on a set of 44 pep-
tides which are proposed to be independent fold-
ing units as determined by local hydrophobic
burial and experimental evidence (Unger & Moult,
1991). The set consists of the structure of the pep-
tides as observed in the complete experimental
protein structure, and a conformation of the frag-
ment generated with a Genetic Algorithm
(Pedersen & Moult, 1997) and a physics-based
potential of mean force (Avbelj & Moult, 1995a).

The PDBERR decoy set consists of structures
determined using X-ray crystallography which
were later found to contain errors, and the corre-
sponding corrected experimental conformations
(Braxenthaler et al., 1997). The SGPA decoy set con-
sists of two conformations generated by molecular
dynamics simulations starting with the Strepro-
myces griseus Protease A experimental structure
(PDB code 2sga) (Avbelj et al., 1990), and the 2sga
experimental structure.

Among all the decoy sets referenced in this
paper, only the LOOP decoy set belongs to class II.
This decoy set consists of sets of conformations for
short loops (four or ®ve residues) that were system-
atically generated using the methods of Moult &
James (1986) and Fidelis et al. (1994). The loop con-
formations are evaluated in the context of the rest
of the experimental structure. Table 5 gives details
about each of the loops in the LOOP decoy set.

Table 4. Class I decoys. The name used to identify the speci®c decoy set, the number of decoys in the set, and Ca
rmsd range of the decoys to the experimental structure, and the appropriate references are given

Decoy Number Ca

set of RMSD
name decoys range (AÊ ) Reference

MISFOLD 25 8.66±22.43 (Braxenthaler et al., 1997; Holm & Sander, 1992b)
CASPI 42 0.53±7.40 (Mosimann et al., 1995; Braxenthaler et al., 1997)
IFU 44 0.21±10.02 (Braxenthaler et al., 1997; Pedersen & Moult, 1997)
PDBERR 3 0.81±13.21 (Braxenthaler et al., 1997)
SGPA 2 1.91±2.06 (Braxenthaler et al., 1997; Avbelj et al., 1990)

Table 5. Class II decoys. The LOOP decoy set is a set of loop conformations that were
systematically generated using the methods of Moult & James (1986) and Fidelis et al.
(1994). For each loop, the number of different loop conformations and the all-atom
rmsd range is given

PDB Residue Number of All-atom rmsd
code range Sequence conformations range (AÊ )

1 3dfr 20±23 PWHL 394 0.75±4.58
2 3dfr 27±30 LHYF 1390 0.81±3.47
3 3dfr 64±68 HQED 71439 0.89±4.19
4 3dfr 120±124 GSFEG 474 0.57±2.91
5 3dfr 136±139 FTKV 10782 1.39±2.15
6 2sga 35±39 TNISA 15453 1.20±3.17
7 2sga 97±101 GSTTG 2079 0.60±3.34
8 2sga 116±119 YGSS 26572 0.47±4.91
9 2sga 132±136 AQPGD 206 0.97±2.58

10 2fbj 265±269 HPDSG 393 0.96±3.90
11 2hfl 264±268 LPGSG 339 1.11±2.81
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Decoy set evaluation

For Class I decoy sets, the ratio of the score of
the incorrect conformation to that of the correct
conformation is determined. A discrimination ratio
less than 1.0 (or log discrimination ratio less than
0.0) indicates that the discriminatory function is
able to distinguish between the correct confor-
mation and the incorrect one. The lower the log
discrimination ratio, the more reliable the discrimi-
nation.

For class II decoy sets, two evaluation measures
are used. One measure is the probability of choos-
ing by chance a conformation with an equal or
lower rmsd than the one selected by the discrimina-
tory function. That is, the number of conformations
that have the same or lower all-atom rmsd, as the
rmsd of the conformation with the lowest score is
divided by the total number of conformations in
the set. The second measure is whether or not a
conformation with an all-atom rmsd within 1.0 of
the lowest rmsd conformation present in the decoy
set is selected by the discriminatory function.

Results of a complete decoy set are summarized
by calculating the average discrimination ratio of all
the decoys and/or as a percentage of decoys cor-
rectly discriminated. Further details on the evalu-
ation protocols and the decoy set generation are
given by Braxenthaler et al. (1997). Proteins in the
structure library that are more than 30% identical in
sequence to a protein in a particular decoy set were
not included in the compilation of the discrimina-
tory function, i.e. the procedure was jack-knifed.

Results

The residue-specific all-atom discriminatory
function performs the best across a wide
variety of decoys

An ideal discriminatory function is one that cor-
rectly discriminates 100% of class I decoys and
selects conformations with low all-atom rmsds
(within 1.0 AÊ of the conformation with the lowest
rmsd) in the LOOP decoy set. In addition, the aver-
age discrimination ratios should be as low as poss-
ible.

The RAPDF comes close to achieving the goal of
100% discrimination, and performs signi®cantly
better than the RVPDF and NVPDF. Figure 1a and
b shows that the RAPDF has the best average dis-
crimination ratio and the largest percentage of
decoys correctly discriminated across a range of
decoy sets. In the case of the MISFOLD, PDBERR,
and SGA decoy sets, it correctly discriminates
100% of the decoys in the set. Further, the average
discrimination ratios show that the scores for the
correct conformations in the MISFOLD, PDBERR,
and SPGA decoy set are on average lower (better)
by 60%, 50% and 25%, respectively, compared to
the scores for the incorrect conformations.

For the IFU decoy set, the percentage of confor-
mations correctly discriminated by the RAPDF is

73%. The average difference between the scores for
the correct conformations and the incorrect confor-
mations for the RAPDF is 10%.

Figure 2 shows the results in more detail for
some of decoys in the CASP1 set, which is a set of
comparative models and their corresponding
experimental structures. Here, the overall percen-
tage of decoys correctly discriminated by the
RAPDF is 93%, for the 42 decoys in this set. The
average difference between the scores for the cor-
rect conformations and the incorrect conformations
for the RAPDF is 15%. The Figure shows the
results for only the models with the lowest Ca
rmsd to the corresponding experimental structures.
The RAPDF does not perform as well as the two
other discriminatory functions in terms of the dis-
crimination ratio in two instances (see the bars
representing nm23 and hpr in Figure 2).

It is less obvious which discriminatory functions
perform best from the log probability and all-atom
rmsd data for the LOOP decoy set (Figure 3). How-
ever, if we examine the actual rmsd values, we
note that for 10 out of 11 loops, the RAPDF picks a
conformation that is within 1.0 AÊ of the lowest
rmsd conformation in the sample space (where the
experimental structure is not included). RVPDF,
NVPDF, and CDF have ratios of 5/11, 9/11, and
8/11, respectively.

Relationship between probability score
and rmsd

Plotting the rmsd versus the score for a set of
conformations from the LOOP decoy set (Figure 4)
shows that the RAPDF correlates reasonably well
with the all-atom rmsd up to quite large rmsds.
This suggests that this discriminatory function can
be useful in simulations that attempt to get closer
to the native conformation starting from a distant
conformation.

Discriminatory power decreases upon
successive approximations

There is an overall progressive deterioration in
the signal going from the all-atom residue-speci®c
discriminatory function to the CDF, as the
description gets more and more approximate
(Figure 1). One major exception is the LOOP
decoy set (Figure 3) where the NVPDF performs
signi®cantly better than the RVPDF. The other
exception is apparent in Figure 1b, for the MIS-
FOLD decoy set.

The compactness term alone is useful for
discriminating between correct and
incorrect conformations

The contribution of the compactness term, which
is measured by the CDF, is better than some of the
other PDFs for certain decoy sets (Figure 1b under
MISFOLD, and Figure 3). Further, in a majority of
the decoy sets, it is adequate to distinguish
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between correct and incorrect conformations most
of the time (Figure 1b under PDBERR and SGA,
and Figure 3).

Using a large distance cutoff helps
in discrimination

Figure 5 shows the percentage of decoys cor-
rectly discriminated at different distance cutoffs
(5.0, 10.0, 15.0, and 20.0 AÊ ). There is a signi®cant
advantage overall to using a larger distance cutoff.
A distance cutoff of at least 15.0 AÊ is necessary to
accurately discriminate all the 25 decoys in the
MISFOLD decoy set. In the cases of the PDBERR
and SGPA decoy sets, it does not appear to make a
difference which cutoff is chosen. The average dis-

crimination ratios for the four different cutoffs
show a similar trend for all decoy sets.

Comparison of the contribution of
electrostatics and non-electrostatics terms

To gain some insight into the nature of the signal
in the RAPDF, we partition the discriminatory
function according to contributions from electro-
static and non-electrostatic contacts. Interactions
between any combination of nitrogen and oxygen
atoms are de®ned to be electrostatic in nature. All
other contacts are considered non-electrostatic.
Figure 6 compares the effectiveness (by measuring
the percentage of conformations correctly discrimi-
nated) of using only the electrostatic or non-elec-

Figure 1. Comparison of the per-
formances of the residue-speci®c
all-atom probability discriminatory
function (RAPDF), the residue-
speci®c virtual-atom probability
discriminatory function (RVPDF),
the non-residue-speci®c virtual-
atom probability discriminatory
function (NVPDF), and the contact
discriminatory function (CDF) for
class I decoy sets. The log of the
average discrimination ratios
between incorrect and correct con-
formations for the ®ve decoy sets
in class I are shown in (a). The
lower the log average discrimi-
nation ratio, the better the discrimi-
nation. The percentage of decoys
that were correctly discriminated
within a decoy set are shown in
(b). In all cases, the most detailed
function, RAPDF, performs best,
and achieves 100% discrimination
for three out of ®ve decoy sets.
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Figure 2. Comparison of the per-
formances of the four discrimina-
tory functions (RAPDF, RVPDF,
NVPDF, and CDF) for selected
decoys in the CASP1 set. The log
discrimination ratios between the
experimental conformation and the
model is shown. The model with
the lowest Ca rmsd to the corre-
sponding experimental confor-
mation is chosen from a given set
of models for this evaluation. The
identi®ers used to label the decoys
are those used by Mosimann et al.
(1995). Best discrimination is
achieved with the RAPDF, except
in two cases where all the decoys
have a low Ca rmsd to the exper-
imental structure.

Figure 3. Comparison of the per-
formances of the residue-speci®c
all-atom probability discriminatory
function (RAPDF), the residue-
speci®c virtual-atom probability
discriminatory function (RVPDF),
the non-residue-speci®c virtual-
atom probability discriminatory
function (NVPDF), and the contact
discriminatory function (CDF) for
the LOOP decoy set. The all-atom
rmsd of the conformation selected
by each discriminatory function (a)
and the log probabilities of observ-
ing an equal or lower rmsd by
chance (b) are shown. The loop
numbers in the horizontal axis cor-
respond to the numbers in Table 5,
column 1. Performance of the
different PDFs is more varied with
this decoy set, although the RAPDF
picks out a conformation with an
rmsd that is within 1.0 AÊ of the
lowest available in ten out of 11
cases.
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trostatic terms, relative to the full PDF. Although
the non-electrostatic terms alone are adequate for
correct discrimination in most cases, the electro-
static term does not play a signi®cant role in
enhancing the signal. This is particularly noticeable
in the CASP1, IFU, and LOOP decoy sets. The
average discrimination ratios for the decoy sets
using the electrostatics, non-electrostatics, and
combined terms (data not shown) indicate a simi-
lar trend except in the case of the CASP1 and IFU
decoy sets, where the ratios are similar regardless
of the terms used.

Linear interpolation improves discrimination

Comparison between the IRAPDF and the
RAPDF (Figure 7) shows that linear interpolation
helps discriminate between correct and incorrect
conformations. This is most obvious in the LOOP
decoy sets where the improvement is quite dra-
matic, but for each decoy set there is some
improvement. For all decoys, the percentage of
structures correctly discriminated is identical
whether or not the conditional probabilities are
interpolated.

The problem of sparse data for compilation of
probabilities is negligible

We examine the uncertainty due to the ®nite
counts in the individual contributions to P (C|dab),
the probability of observing a correct conformation
given a contact between atom types a and b at a
distance d:

P�Cjdab� � P�dabjC�
P�dab� �

N�dab�=�dN�dab�
�abN�dab�=�d�abN�dab� �12�

Equation (12) is formed by expanding equation (4)
in terms of equations (5) and (6). Detailed expla-
nations for these terms are given in the Methods
section. To begin our analysis, let us examine
Table 6 for the nature of the raw counts that we
encounter in our observations for each of the four
terms in the above expression. Since both terms in
the denominator in equation (12) are sums over all
atom types, they are well determined and do not
lead to signi®cant uncertainty in the probabilities.
In the denominator, �dN(dab) is also well deter-
mined, even for the rarest atom types. Thus, all the
uncertainty arises for the individual N(dab) counts,
which may indeed be low: in a rare atom pair, we
might count zero or one observation, for example,
and have an uncertainty of a factor of 2 in the
resulting probability.

Figure 4. Performance of the residue-speci®c all-atom
probability discriminatory function (RAPDF) for a
selected loop in the LOOP decoy set. The all-atom rmsd
AÊ versus the negative log conditional probability of the
26,572 conformations for the 2sga 116 to 119 LOOP set
is shown. The negative log conditional probability of a
conformation increases as the rmsd progressively gets
worse, a useful property for long-range model
re®nement.

Figure 5. Performance of the resi-
due-speci®c all-atom probability
discriminatory function (RAPDF) at
different cutoffs. The percentages of
structures correctly discriminated
for six decoy sets at four different
cuttoffs is shown. In the case of the
LOOP decoy set, ``correct'' dis-
crimination is de®ned to be the
selection of conformation that is
within 1.0 AÊ of the lowest all-atom
rmsd conformation for each loop.
Generally, discrimination progress-
ively improves up to a cutoff of
20.0 AÊ .
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To analyse the uncertainty in the conditional
probabilities due to the dataset dependence of the
counts, we examine two atom±atom preferences,
cysteine N±tryptophan O (CN-WO), a minimum
counts situation, and isoleucine Ca±leucine Cd2

(ICa-LCd2), an average counts situation.
Figure 8 compares the effect of uncertain count

values (generated as described in the Methods sec-
tion) on the conditional probabilities for the prefer-
ences between these two pairs of atom types.
There is signi®cantly more error in the conditional
probabilities for the worst case (CN-WO) than for
the average case (ICa-LCd2). In the average case,
the absolute error in the scores is generally less
than 0.1 and has a maximum value of about 1.0 (in
the 0 to 3.0 AÊ distance bin). In the worst case, the
absolute error in the scores is generally less than
0.5 and has a maximum value of about 1.0.

Relationship between the conditional
probabilities and the nature of physical
interactions in proteins

One would expect that the conditional prob-
ability distributions should re¯ect the known

physical and entropic effects that are believed to be
important in determining protein structure (Dill,
1990). With so much data, it is not possible to sys-
tematically assess this relationship. We have exam-
ined a few of the distributions to try to understand
the features in these terms.

We ®rst examine the set of Ca±Ca and Cb±Cb

interaction probabilities (Figure 9). Although there
is a signi®cant spread among the residue types, the
curves show several consistent features. In the
Ca±Ca distributions, there are two minima,
between 3.0 and 4.0 and between 5.0 and 6.0. The
Cb±Cb curves show only the second, in the 5.0 to
6.0 range. The ®rst Ca±Ca minimum is a simple
consequence of the covalently determined distance
between adjacent Ca atoms in the polypeptide
chain, around 3.8 AÊ . The origin of the second one
is less obvious. An analysis of the interactions in
the proteins in Table 3 reveals that this feature
arises primarily from Ca±Ca distances separated
by two or three residues (i, i � 2 and i, i � 3) in a-
helices. Similarly, the single Cb±Cb minimum has
its origin in i, i � 1 and i, i � 2 separations in both
a-helices and b-strands.

Figure 6. Comparison of electro-
static, non-electrostatic, and com-
bined terms in the residue-speci®c
all-atom probability discriminatory
function (RAPDF). The percentages
of structures correctly discrimi-
nated for various decoy sets is
shown. In general, the non-electro-
static terms provide the most
signal.

Figure 7. Comparison of the
residue-speci®c all-atom probability
discriminatory function (RAPDF) to
the linearly-interpolated version
(IRAPDF). For ®ve of the decoy
sets, the bars represent the log of
the average discrimination ratio of
the probabilities between the
correct and incorrect structures. For
the LOOP decoy set, the bars
represent the log average of the
probabilities of ®nding at least one
structure with a lower all-atom
rmsd than the one with the best
discrimination by chance (i.e. the
sum of log probabilities divided
by the number of loops). In
all cases, interpolation improves
discrimination.
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More dramatic than the consistent features is the
large spread in values in both plots in the 0.0 to
3.0 AÊ bin and in the 3.0 to 4.0 AÊ bin in the Cb±Cb
plot. On closer inspection, these turn out to be

mostly irrelevant low count artifacts: there are
almost no such distances in experimental struc-
tures. However, since all counts are initialized to
one, zero probabilities are not possible, and appar-
ent probabilities are dominated by the variation in
the total counts over all bins for a pair of atom
types, �abN(dab). In practice these probabilities will
not be used to evaluate conformations. A real com-
ponent of the signal in the lowest bin for the Cb±
Ca plot is provided by cis-peptides: the lowest
scores are for distances between Ca atoms of pro-
line residues to Ca atoms of other residues, re¯ect-
ing the higher frequency of such conformations
before prolines. In the Cb±Cb plot, the outlier with
the score of almost ÿ3.0 is for disulphide linked
cysteine-cysteine pairs.

Table 6. Details of the counts obtained when compiling
the conditional probabilities. For each term in equation
(12), the minimum counts and the average counts is
given for all atom types and all distance bins. Only the
®rst term, N(dab), contributes signi®cantly to the uncer-
tainty in the probabilities

Term Minimum counts Average counts

N(dab) 1 648
�dN(dab) 1525 11,708
�abN(dab) 1,011,903 9,143,295
�d�adN(dab) 164,980,971 164,980,971

Figure 8. Comparison of the effect
of counting uncertainties on the
conditional probabilities for two
pairs of atom types, cysteine
N±tryptophan W (CN-WO), where
the counts are among the lowest in
the database, and isoleucine Ca±
leucine Cd2 (ICa-LCd2), where the
counts in the 0.0 to 3.0 AÊ bin dis-
tance are similar to the average
counts in Table 6. The broken line
connects observed conditional
probabilities and the points around
the broken line represent the vari-
ation due to the uncertainty in the
counts (see the Methods section).
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Ca±Ca distance plots for particular residue
pairs show unique features. For example, differ-
ences between valine±valine and alanine±alanine
re¯ect the different frequency of occurrence of
these residues in a and b secondary structures
(Figure 10). a-Helices have Ca±Ca distances
between 5.0 and 6.0 AÊ for i, i � 1 and i, i � 3
pairs, and this is re¯ected in the slightly deeper
minimum in the alanine curve compared to that
of valine. Conversely, b strands have distances in
the 6.0 to 7.0 AÊ range for i, i � 2 residues, produ-
cing the deeper minimum for the corresponding
bin in the valine curve. This is an example of the
type of signal the conditional probabilities incor-
porate automatically, but which is not easily cap-
tured in a physics-based potential.

Similar signi®cant residue speci®c features can
be found in many of the curves. For example, the
spread in values in the lowest distance bins for the
N-O curves (Figure 11) re¯ects the different fre-
quencies of backbone hydrogen bonding for differ-
ent pairs of residue types and is also directly
linked to the variation in frequency of occurrence
of different residues in alpha and beta secondary
structure. Figure 12 shows two extremes of hydro-
gen bonding preferences between residue pairs.
Not surprisingly, curves for proline nitrogen have
very low probability of close contact with a main-
chain oxygen, re¯ecting the inability of this nitro-
gen atom to participate in hydrogen bonds. A little
more subtly, the highest probability of hydrogen
bonding is between aspartate N and lysine O,

Figure 9. Plot illustrating the con-
ditional probabilities encountered
in the 18 distance bins for all Ca±
Ca contacts and all Cb±Cb contacts.
The spread at a given distance bin
illustrates the differences in prob-
abilities for the atom types in
different residues. The average of
the scores for each bin is connected
by the broken line. Consistent,
though weak, minima are seen.
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re¯ecting the tendency for i, i � 4 salt bridges in
a-helices, and for salt bridges between residues on
adjacent b-strands. Figure 11 also shows the curves
for a side-chain±main-chain interaction, N±aspar-
tate Od1. The variation in the curve at low dis-
tances re¯ects the different propensity for aspartic
acid side-chains to interact with the NH groups of
different residue types.

Discussion

Performance of the all-atom residue-specific
probability discriminatory function

The most detailed discriminatory function we
have tested is successful against a wide range of
decoys. Although there are some failures (dis-

cussed below), this level of performance suggests
the function will at least be useful for protein struc-
ture prediction. Other work (Samudrala & Moult,
1997), which assess the predictive power of this
discriminatory function in blind tests, indicates
that it can distinguish correct side-chain and main-
chain conformations from incorrect ones in a real-
life modeling scenario.

However, these tests do not rule out that there
are sparse false minima in the function's surface,
not sampled by the decoys. Further decoy testing
is planned, as well as tests searching for exper-
imental structures starting from approximate ones.
In this connection, it is encouraging to note that
there is a good correlation between the score from
the function and the all atom rmsd of a confor-

Figure 10. Plots illustrating the
conditional probabilities for alanine
Ca±alanine Ca (ACa-ACa) and
valine Ca±valine Ca (VCa-VCa).
The negative log conditional prob-
abilities are plotted against the 18
distance bins.
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mation (Figure 4); so that a reasonable range of
convergence can be expected in such searches.

Effect of approximating the detail in the
discriminatory function representation

The more approximate discriminatory functions
(RVPDF, NVPDF, CDF) are all able to discriminate
between the correct and incorrect structures to
some degree, but for the most accurate discrimi-
nation across a range of different decoys, an all-
atom residue-speci®c representation is necessary
(Figure 1a and b).

Effect of the compactness term on
predictive power

As one would expect, the signal from the CDF is
consistently less strong than from the other discri-

minatory functions tested (Figure 1a), except with
the loop decoy set, where it performs competitively
(Figure 3). In the case of the PDBERR, SGPA and
the LOOP decoy sets, the signal is suf®ciently
strong to provide overall discrimination in most
instances. For the MISFOLD, CASP2, and IFU
decoy sets, it is less effective. Other workers have
noted that compactness alone provides a strong
signal when the competing conformations are ran-
dom coil like (Jernigan & Bahar, 1996; Bahar &
Jernigan, 1997). Here we see that the signal may
still be very signi®cant in much less obvious situ-
ations. Before applying this test, we were unaware
that our high rmsd loop conformations tended to
be the least compact. These results provide a good
illustration of the need for multiple types of decoy
set in testing a discriminatory function. A particu-
lar set may have a speci®c property, such as being

Figure 11. Plot illustrating the con-
ditional probabilities encountered
in the 18 distance bins for N-O pre-
ferences and preferences between
main chain nitrogens and aspartic
acid Od1 for all residue pairs. The
average of the negative log con-
ditional probabilities for each bin is
connected by the broken line. The
variation in the low bin distances
re¯ects the varying propensities for
different residues to form these
interactions.
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less compact than the native structures, and excel-
lent performance may be obtained from a function
utilizing that signal. But in a real life application,
(for example, assessing comparative models) that
signal may not be present.

Effect of using a large distance cuttoff

Using a 20.0 AÊ distance cutoff results in the most
accurate discrimination for the RAPDF (Figure 5).
The signal from each atom±atom interaction is
extremely weak at such large distances (see
Figures 9, 11, 10, and 12), but each atom has a very
large number of contacts, so that the combined sig-
nal still has an impact. It is unlikely that the energy
interaction is signi®cant, except perhaps between
charged groups. However, the overall tendency of
proteins to be organized ``hydrophobic inside,

hydrophilic outside'' may result in a signal in the
probability curves (Huang et al., 1995).

Contributions of electrostatic and non-
electrostatic terms

Both electrostatic and non-electrostatic terms
(Figure 6) contribute to discrimination, but neither
one alone performs as well as the combination.
With these decoys, the non-electrostatic contri-
bution is usually the most signi®cant, an effect that
is most pronounced for the PDBERR and the
LOOP decoy sets. The electrostatic contribution is
probably dominated by the main-chain hydrogen
binding, since these probabilities tend to have pro-
nounced features (Figure 10), and there are many
such terms contributing. In the loops set, the back-
bone hydrogen bonding groups tend to be more

Figure 12. Plots illustrating the con-
ditional probabilities for aspartate
N±lysine O and proline N±trypto-
phan O. The shorter minimum in
the 0.0 to 3.0 AÊ bin for proline N±
tryptophan O re¯ects the inability
of proline N to hydrogen bond.
The deep minima for aspartate
N±lysine O re¯ects the tendency
of these residues to salt bridge in
a-helices and b-sheets, resulting in
main-chain hydrogen bonds.
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solvated than in most of the structure contributing
to the probabilities.

Effect of linear interpolation and the problem
of sparse data

The discriminatory functions described here
were constructed using the simplest possible
models. A more sophisticated model would take
into account the effects of low counts in the com-
putation of the frequencies and would also per-
form some sort of ``smoothing'', or interpolation,
between the discrete conditional probabilities.

The problem of low counts is less severe with
this formalism than with some others, where
counts are further subdivided by the sequence sep-
aration between the atoms involved (Sippl, 1990;
Subramaniam et al., 1996). The total conditional
probability score for a given protein conformation
represents a sum over a very large number of indi-
vidual terms (in the order of 106 contributions) so
that the effect of the uncertainties is reduced.

Linear interpolation of the conditional probabil-
ities in the RAPDF does result in better discrimi-
nation for these decoy sets (Figure 7). This
suggests that the discrete points for each distance
bin can be represented by a continuous function
and so used with a gradient-dependent protein
folding simulation technique.

Effect of aritfacts in the decoy sets

A discriminatory function may be able to select
the correct conformation by utilizing subtle differ-
ences in the incorrect conformations which dis-
tinguish them from the experimentally determined
structures. For example, re®nement of structures
determined using X-ray crystallography is usually
done with programs (like X-PLOR (BruÈ nger, 1992))
which effectively restrain particular distances for
atom±atom interactions, such as hydrogen bonds.
Since the PDFs are parameterized on high resol-
ution X-ray crystallography structures, it is import-
ant to demonstrate that discrimination of correct
conformations from incorrect ones is not based on
this kind of ®ne detail.

For the LOOP decoy set (Figures 3 and 4) this is
not the case, as the criteria for correctness depend
on selecting a low rmsd conformation to the exper-
imental structure, not the experimental structure
itself. For the crystallographic error (PDBERR)
decoy set, discrimination based on ®ne detail is
unlikely, as both the correct and incorrect confor-
mations were re®ned using X-PLOR (BrunÈger,
1992) or PROLSQ (Hendrickson et al., 1985).

To test whether such an artifact is responsible
for accurate discrimination in the CASP1 decoy set,
consisting of homology models and their corre-
sponding experimental structures, we energy mini-
mized two models together with the experimental
structures using the DISCOVER CVFF force®eld
(Hagler et al., 1974; Dauber-Osguthorpe et al.,
1988). The discrimination ratios of the negative log

conditional probabilities between the unminimized
model and the unminimized experimental struc-
ture are 0.82 and 0.87 for the two cases The corre-
sponding ratios of the minimized model to the
minimized experimental structure are 0.78 and
0.83. Thus, surprisingly, discrimination is slightly
improved by this procedure, rather than deteriorat-
ing as would be the case if the signal were arising
from ®ne scale differences. While this is not an
exhaustive test, it suggests that the signal that sep-
arates correct and incorrect conformations is not
due to ®ne details in the experimental structures.

A similar test was performed for the SGPA
decoy set, in this case, minimizing all structure
using 1000 steps of steepest descent using the
CHARMM force®eld (Brooks et al., 1983). The dis-
crimination ratios between the simulation struc-
tures and the unminimized experimental structure
are 0.72 and 0.74 for the two cases. The corre-
sponding ratios of the minimized simulation struc-
tures to the minimized experimental structure are
0.79 and 0.80.

In the MISFOLD decoy set, the main chains of
both the correct and incorrect conformations are
from structures determined using X-ray crystallo-
graphy. However, the percentages of structures
correctly discriminated using non-speci®c compact-
ness, measured by the CDF (Figure 1a) indicates
that the side-chain packing in the incorrect confor-
mations does not generate as many atom±atom
contacts within 6.0 AÊ as would normally be
observed in an experimental conformation for that
sequence. So for these decoys the signal may be
partially due to ®ne differences between correct
and incorrect conformations.

Limits on the discriminatory power

There are de®nite limits as to what the discrimi-
natory functions can achieve. The weakest per-
formance is for the IFU decoy set, where the
percentage discrimination by the RAPDF is 70%.
The independent folding units in this set are short
fragments (between 10 and 20 residues) that are
removed from the context of the rest of the struc-
ture. In some cases, the failure may be because
these fragments do not represent bona ®de indepen-
dent folding units. In others, the information avail-
able in the fragments may not be adequate to
uniquely identify the correct conformation from
the incorrect conformation, as the scores are evalu-
ated on relatively small numbers of atom pairs.

Discrimination is not attained for one member of
the LOOP decoy set (residues 265 to 269 in the
immunoglobulin A FAB fragment; PDB code 2fbj).
This region is involved in several (>10) intermole-
cular crystallographic contacts of less than 4.0 AÊ in
the experimental structure. However, the CDF
(Figure 3) and other discriminatory functions
(Braxenthaler et al., 1997) are able to discriminate
well.

In the CASP1 decoy set (Figure 2), the RAPDF
with one protein, nucleoside diphosphate kinase
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(nm23), fails to discriminate between the correct
and approximate conformations, and with another
protein (hpr) performs worse than RVPDF and
NVPDF. In both these cases, the approximate con-
formations are very similar (within 0.53 and 1.05 AÊ

Ca rmsd, respectively) to the experimental struc-
ture. This suggests that the discriminatory function
may be unable to consistently discriminate correct
from incorrect when the conformations are close
(around 1.0 AÊ Ca rmsd) to the experimental confor-
mation. Present comparative modelling techniques
do not approach this level of accuracy except at
very high sequence identity (Martin et al., 1997), so
meanwhile this is not a concern.

Effect of experimental accuracy

An alternative explanation for poor discrimi-
nation with nm23 is the relatively low quality of
the experimental structure (2.8 AÊ resolution with
an R-factor of 0.25 (Webb et al., 1995)). The parent
structure used for the comparative modelling, PDB
code 1ndl, has a high sequence identity (77%), and
has been solved to a 2.4 AÊ resolution with an R-
factor of 0.16 (Chiadmi et al., 1993). Thus the poor
discrimination of the RAPDF may simply re¯ect
the moderate resolution and incomplete re®nement
of the target experimental structure relative to the
parent structure.

Relevance of conditional probabilities to the
nature of physical interactions observed
in proteins

The discriminatory function was compiled using
statistical observations, averaging over different
environments in protein structures. As a result, it
displays some features not observed in a direct
way in a physics-based energy function, as shown
in Figures 9, 10, 11, and 12.

Caution should be used when interpreting the
conditional probability or potential of mean force
data in physical terms because of the averaging of
environments that occurs during the compilation
of the probabilities. To illustrate with an extreme
example, the minimum in the N±O plot (Figure 11)
in the 0.0 to 3.0 AÊ bin averages over hydrogen
bonds between N and O atoms in i, i � 4 residues
in a-helices and between N±O distances in i, i � 1
(neighbouring) residues. It is thus dif®cult to ascer-
tain exactly where the signal is coming from given
the two different environments.

Nevertheless, many of these features seen are
physically signi®cant. Some are obvious: for
example, the largest minima in the plot of Ca±Ca
contacts (Figure 9) re¯ects the geometrical con-
straints imposed by the covalent structure of the
polypeptide chain, and the low score for contacts
between proline nitrogen and other main-chain
oxygen re¯ects the absence of the hydrogen atom
in proline nitrogen (Figure 11).

Some of the features are less obvious: the smal-
lest negative log conditional probabilities for nitro-

gen±oxygen contacts are in the 0.0 to 3.0 AÊ bin for
aspartate and lysine, re¯ecting the tendency of
these residues to form salt bridges in a-helices and
b-sheets, resulting in main-chain hydrogen bonds
between them (Figures 11 and 12).

Availability of the PDFs

The Tables containing the parameters for the
PDFs, the decoy sets, and software to handle the
data are available from the PROSTAR Web site
(Braxenthaler et al., 1997).
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